STRUCTURAL CHOROIDAID CHANGES IN DIABETIC RETINOPATHY

Authors

  • Aizhan Р MAGAZOVA Asfendiyarov Kazakh National Medical University
  • Aigul V BALMUKHANOVA Asfendiyarov Kazakh National Medical University
  • Elmira G KANAFYANOVA Kazakh Scientific Research Institute of Eye Diseases
  • Irina V SHARGORODSKAYA National Medical Academy of Postgraduate Education n.a. P.L. Shupic
  • Kamalidin O SHARIPOV M. Aitkhozhin Institute of Molecular Biology and Biochemistry

DOI:

https://doi.org/10.31082/1728-452X-2020-213-214-3-4-74-81

Keywords:

diabetes mellitus, diabetic retinopathy, choroid, diabetic choriopathy, OCT angiography, choroid structures

Abstract

Blindness and low vision, as a social medical problem, occupy one of the leading places in both healthcare and the state economy. Diabetic retinopathy (DR) is a vision-threatening microvascular disease, the most common diabetes complication that affects the retina, causing blindness among working-age adults in developed countries. Difficulties in determining the starting, key pathogenetic links and early diagnosis of this disease do not allow to accurately determine the initial moment of occurrence, and known treatment methods are aimed, as a rule, at slowing down the pathological process.
Purpose. Analysis of literature data on the clinical and diagnostic features of diabetic retinopathy.
Material and methods. To analyze the literature, information was searched on this problem up to 10 years deep in PubMed / MEDLINE, PMC, Web of Since. For the search, the following terms were used individually or in combination: "diabetes mellitus", "diabetic retinopathy", "diabetic vasculopathy", "optical coherence tomography", "fluorescence angiography", "complications". The search criteria were key studies related to diabetic retinopathy, vasculopathy: meta-analyzes, original studies, retrospective and cohort studies.
Results and discussions. Oxygen from the capillary layer of the choroid through the Bruch membrane and retinal pigment epithelium (RPE) gets to the outer retinal layers. Due to complications in the bloodstream, nutrition is impaired which leads to diabetic retinal changes. It is advisable and necessary to study changes in the structures of the choroid in large samples using angio-OCT, since changes in the choroid can be the primary prognostic markers of the development of diabetes in the absence of clinical manifestations of diabetic retinopathy.
Conclusion. Changes in the structure of the choroid can become a marker for predicting the development of DR in patients with type 2 diabetes, more accurately and quickly establish a diagnosis in the early stages of the disease, and prescribe appropriate therapy in a timely manner. As a result, patients receive timely care and treatment costs will decrease.

References

International Diabetes Federation. IDF Diabetes Atlas. 7th ed. Brussels: IDF; 2017. Available from: https://idf.org/e-library/epidemiology-research/diabetes-atlas.html

International Diabetes Federation. IDF Diabetes Atlas. 8th ed. Brussels: IDF; 2017. Available from: https://idf.org/e-library/epidemiology-research/diabetes-atlas.html

Hwang TS, Gao SS, Liu L, et al. Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMА Ophthalmol. 2016;134(4):367-73. DOI: 10.1001/jamaophthalmol.2015.5658

Ishibashawa A, Nagaoka T, Takahashi A, Omay T, Tani T, Sogawa K, Yokota X, Yoshida A. Optical coherent tomographic angiography in diabetic retinopathy: a prospective pilot study. Am

J Ophthalmol. 2015;160(1):35-44.e1. DOI: 10.1016/j.ajo.2015.04.021

Agemi SA, Scriemsema NK, Shah SM, Chui T, Garcia PM, et al. Retinal vascular perfusion density mapping using optical coherence tomography and angiography in normals and diabetic retinopathy patients. Retina. 2015;35(11):2353-2363. DOI: 10.1097/IAE.0000000000000862

Yu GY, Cringle SJ. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res. 2001; 20(2):175-208. DOI: 10.1016/s1350-9462(00)00027-6

Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–168. DOI: 10.1016/j.preteyeres.2009.12.002

Grenga PL, Fragiotta S, Meduri A, Lupo S, Marenco M, Vingolo EM. Fixation stability measurements in patients with neovascular age-related macular degeneration treated with ranibizumab. Can J Ophthalmol. 2013;48 (5): 394–9. DOI: 10.1016/j.jcjo.2013.04.006

Grunwald JE, Metelitsina TI, Dupont JC, Ying G-S, Maguire GM. Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest. Ophthalmol Vis Sci. 2005; 46(3):1033-38. DOI: 10.1167/iovs.04-1050

Shiragami S, Shiraga F, Matsuo T, et al. Risk factors for developing diabetic choroidopathy in patients with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2002;240 (6):436–442. DOI: 10.1007/s00417-002-0451-5

Hidayat AA, Fine BS. Diabetic choroidopathy. Light and electron microscopic observations of seven cases. Ophthalmology. 1985;92(4):512-22

Fryczkowski AW, Sato SE, Hodes BL. Changes in the diabetic choroidal vasculature: scanning electron microscopy findings. Annals of Ophthalmology. 1988;20(8):299-305

Weinhaus RS, Burke JM, Delori FC, Snodderly DM. Comparison of fluorescein angiography with macrovascular anatomy of macaque retinas. Exp Eye Res. 1995;61(1):1-16. DOI: 10.1016/s0014-4835(95)80053-0

Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45-50. DOI: 10.1001/jamaophthalmol.2014.3616

Kwiterovich KA, Maguire MG, Murphy RP, et al. Frequency of adverse systemic reactions after fluorescence angiography. Results of a prospective study. Ophthalmology. 1991;98:1139-1142

Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254 (5035):1178-81. DOI: 10.1126/science.1957169

Belekhova S G, Astakhov Yu S. Changes in the thickness of the choroid in various forms and stages of age-related macular degeneration. Oftalmologicheksie vedomomsti = Ophthalmic Sheets. 2015;8(3):14-18 (In Russ.)

Shaudig U, Hassenstein A, Bernd A, Walter A, Richard G. Limitations of imaging choroidal tumors in vivo by optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 1998;236(8):588-92. DOI: 10.1007/s004170050126

19 Scott IU, Danis RP, Bressler SB, Bressler NM, Browning DJ, Qin H, Diabetic Retinopathy Clinical Research Network. Effect of focal/grid photocoagulation on visual acuity and retinal thickening in eyes with non-center-involved diabetic macular edema. Retina. 2009;29 (5): 613-7. DOI: 10.1097/IAE.0b013e3181a2c07a

Bandello F. Fluorescein angiography in laser treatment of diabetic macular edema. Ophthalmology. 2001;108 (2):236. DOI: 10.1016/s0161-6420(00)00254-2

Bandello F, Lanzetta P, Menchini U. When and how to do a grid laser for diabetic macular edema. Doc Ophthalmol. 1999;97 (3-4): 415-419. DOI: 10.1023/a:1002499920673

Spaide RF, Koizumi H, Pozonni MC. Enhaced depth imaging spectraldomain optica coherence tomography. Am J Ophthalmol. 2008;146 (4):496-500. DOI: 10.1016/j.ajo.2008.05.032

Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469-1473

Iida T. Pathophysiology of macular diseases--morphology and function. Nippon Ganka Gakkai Zasshi. 2011;115(3):238-274

Rui Hua, Limin Liu, Xinling Wang, and Lei Chen. Imaging Evidence of Diabetic Choroidopathy In Vivo: Angiographic Pathoanatomy and Choroidal-Enhanced Depth Imaging. PLoS One. 2013;8(12):e834-894. DOI: 10.1371/journal.pone.0083494

Chen C-L, Bojikian KD, Gupta D, Wen JC, et al. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography – based microangiography. Quant Imaging Med Surg. 2016; 6(2):125-133. DOI: 10.21037/qims.2016.03.05

Chen C-L, Wang RK. Optical coherence tomography based on angiography. Biomed Opt Express. 2017;8(2):1056-1082. DOI: 10.1364/BOE.8.001056

Tan K-A, Gupta P, Agarwal A, Chhablani J, Cheng C-Y, Keane PA, Agrawal R. State of science: Choroidal thickness and systemic health. Surv Ophthalmol. 2016;61(5):566-581. DOI: 10.1016/j.survophthal.2016.02.007

Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ, Laver N, Fujimoto JG. Duker JS. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology. 2013;120(9):1901-1908. DOI: 10.1016/j.ophtha.2013.01.066

Agrawal R, Gupta P, Tan K-A, Cheung CMG, Wong T-Y, Cheng C-Yu Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study. Sci Rep. 2016; 6:1-9. DOI: 10.1038/srep21090

Agrawal R, Salman M, Tan K-A, Karampelas M, et al. Choroidal Vascularity Index (CVI) - -A Novel Optical Coherence Tomography Parameter for Monitoring Patients with Panuveitis? Plos One. 2016;11(1):78-79. DOI: 10.1371/journal.pone.0146344

Kim M, Ha MJ, Choi SY, Park Y-H. Choroidal vascularity index in type-2 diabetes analyzed by swept-source optical coherence tomography. Sci Rep. 2018;8:70. DOI: 10.1038/s41598-017-18511-7

Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal Thickness in Healthy Japanese Subjects. Invest Ophthalmol. Vis. Sci. 2010;51(4):2173-6. DOI: 10.1167/iovs.09-4383.

Fujiwara T, Imamura Y. Margolis R, Slakter JS, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445-50. DOI: 10.1016/j.ajo.2009.04.029

Fabrikantov OL, Popova NV, Goydin AP. Diagnostic capabilities of optical coherence tomography-angiography with choroidal neovascularization (review of clinical cases). Meditsina = Medicine. 2017;5,2(18):55-63 (In Russ.)

Aleksandrov AA, Aznabaev BM, Muhamadeev TR, et al. The first experience of applying OCT angiography in the diagnosis of glaucoma. Sovremennye tekhnologii v oftalmologii = Modern technologies in ophthalmology. 2015;3:9-10 (In Russ.).

Alexandrov AA. OCT angiography: quantitative and qualitative assessment of the microvascular bed of the posterior segment of the eye. Kataraktalnaia i refraktsionnaia khirurgiia = Cataract and refractive surgery. 2015;15(3):4-9 (In Russ.)

de Carlo TE, Chin AT, Bonini Filio MA, et al. Detection of microvascular changes in eyes of patients with diabetes but not with clinical diabetic retinopathy, using optical coherence tomography, angiography. Retina. 2015;35(11):2364-2370. DOI: 10.1097/IAE.0000000000000882

Matsunaga DR, Yi JJ, De Koo LO, Ameri H, Puliafito CA. Kashani AH. Optical coherence tomography, angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging Retina. 2015; 46(8): 796-805. DOI: 10.3928/23258160-20150909-03

Couturier A, ​​Manet V, Bonnin S, et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography, angiography. Retina. 2015;35(11):2384-2391. DOI: 10.1097/IAE.0000000000000859

Hwang TS, Jia Y, Gao SS, Bailey ST, et al. Optical coherence tomography angiographic features of diabetic retinopathy. Retina. 2015;35(11):2371-2376. DOI: 10.1097/IAE.0000000000000716

Carnevali A, Sacconi R, Corbelli E, Tomasso L, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54(7):695-702. DOI: 10.1007/s00592-017-0996-8

Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, et al. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134 (4):367-373. DOI: 10.1001/jamaophthalmol.2015.5658

Lupidi M, Coscas G, Coscas F, Fiore T, Spaccini E, Fruttini D, Cagini C. Retinal Microvasculature in nonproliferative diabetic retinopathy: automated quantitative optical coherence tomography angiography assessment. Ophthalmic Res. 2017;58(3):131-141. DOI: 10.1159/000471885.

Qinqin Zhang, Kasra A. Rezaei, Steven S. Saraf, Zhongdi Chu, Fupeng Wang, Ruikang K. Wang. Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quant Imaging Med Surg. 2018;8(8):743-753. DOI: 10.21037/qims.2018.09.02

McCourt EA, Cadena BC, Barnett CJ, Ciardella AP, et al. Measurement of subfoveal choroidal thickness using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2010;41:S28-33. DOI: 10.3928/15428877-20101031-14

Ulitina AYu. Izmaylov AS. Estimation of the thickness of the choroid in age-related macular degeneration. Vestnik OGU = Bulletin of OSU. 2013; 4(153):275-279 (In Russ.)

Choi W, Waheed NK, Moult EM, et al. Ultrahigh speed swept source optical coherence tomography, angiography of retinal and choriocapillaris alterations diabetic patients with and without retinopathy. Retina. 2017;37(1):11-21. DOI: 10.1097/IAE.0000000000001250

Published

2020-04-07

Issue

Section

Articles

Most read articles by the same author(s)