PROSPECTS FOR STUDYING CYTOKINE STATUS IN PATIENTS WITH DIABETES MELLITUS IN THE POSTCOVIDAL AND POSVACCINAL PERIOD
DOI:
https://doi.org/10.31082/1728-452X-2021-224-2-16-24Keywords:
COVID-19, SARS-CoV-2, diabetes mellitus, vaccination, cytokines, cytokine storm, chemotaxis, phagocytosis, inhibitors SGLT2, DPP-4, ACE2Abstract
The coronavirus infection (COVID-19) pandemic caused by coronavirus 2 (SARS-CoV-2) causes significant morbidity and mortality. Individuals with diabetes mellitus (DM) are more likely to become infected and have a higher risk of complications and death from COVID-19. Therefore, a much more focused approach to the management of patients with diabetes is needed by regularly assessing systemic inflammation and cardiovascular risk in this population, and one such approach could be the use of circulating biomarkers to track disease progression, as well as the effectiveness of treatment and immunoprophylaxis. We hope to identify knowledge gaps that warrant further research regarding COVID-19 in patients with diabetes.
Purpose of the study. The aim of the present study is to study the cytokine status in patients with diabetes mellitus in the postcovid and post-vaccination periods.
Material and methods. A critical review of 100 scientific papers over the past 10 years was carried out using the resources of the search engines PubMed, Google Scholar and eLIBRARY, of which 54 studies were selected using the following keywords: COVID-19, SARS-CoV-2, diabetes mellitus, vaccination, cytokines, cytokine storm, chemotaxis, phagocytosis, inhibitors SGLT2, DPP-4, ACE2. The inclusion criteria were: full-text articles and research papers with a high index of evidence base. Studies were excluded in the presence of literature sources with no evidence and low quality work.
Results and discussion. The review is devoted to the study of the peculiarities of the cytokine status of coronavirus infection in patients with diabetes mellitus (DM) and the mechanisms of the relationship between coronavirus infection and newly diagnosed diabetes mellitus are discussed. In addition, the review focuses on the pharmacotherapy of diabetes mellitus in coronavirus infection, postcovid management and the impact of vaccination against coronavirus infection in patients with diabetes mellitus. The article substantiates the obvious benefit of determining the cytokine status in patients with diabetes mellitus with coronavirus infection. Since the course of COVID-19 and the manifestations of postcovid syndrome depend on the level of cytokines.
Our literary search on this issue, analytical, critical reviews of the scientific literature also showed that patients with diabetes are more prone to contracting certain types of infections, and the mortality rate for people with diabetes is about three times higher than the overall mortality from COVID-19 without diabetes. In addition, there is completely limited data on the immune response after Covid-19 vaccination in patients with diabetes.
Conclusions. The current situation in a pandemic requires an urgent study of the cytokine status in patients with diabetes mellitus in order to determine the management tactics in the postcovid and post-vaccination periods.
References
De Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Current Topics in Microbiology and Immunology. 2018; 419:1-42. PMID: 28643204. doi: 10.1007/82_2017_25
Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome. GenBank: MN908947.3
World Health Organization. 2020. Coronavirus disease (COVID-19) situation report – 138
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respiration Medicine. 2020. PMID: 32105632. PMCID: PMC7102538. doi: 10.1016/S2213-2600(20)30079-5.
Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology. 2020;109(5):531–538.
PMID: 32161990. PMCID: PMC7087935. doi: 10.1007/s00392-020-01626-9
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. Journal of the American Medical Association. 2020. PMID: 32091533 doi: 10.1001/jama.2020.2648
Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020;395:1225–1228. PMID: 32178769 PMCID: PMC7102589. doi: 10.1016/S0140-6736(20)30627-9.
International Diabetes Federation. 9th ed. 2019. IDF Diabetes Atlas 2019. Available from: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf
Iglay K, Hannachi H, Joseph Howie P, Xu J, Li X, Engel SS. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Current Medical Research and Opinion. 2016;32(7):1243-1252. PMID: 26986190 doi: 10.1185/03007995.2016.1168291
Long AN, Dagogo-Jack S. Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. Journal of Clinical Hypertension. 2011;13(4):244–251. PMID: 21466619. PMCID: PMC3746062. doi: 10.1111/j.1751-7176.2011.00434.x
Fazeli Farsani S, Souverein PC, van der Vorst MM, Knibbe CA, de Boer A, Mantel-Teeuwisse AK. Chronic comorbidities in children with type 1 diabetes: a population-based cohort study. Archives of Disease in Childhood. 2015;100(8):763–768.
Beckman JA, Creager MA. Vascular complications of diabetes. Circulation Research. 2016;118(11):1771–1785. PMID: 25877155. doi: 10.1136/archdischild-2014-307654
Critchley JA, Carey IM, Harris T, DeWilde S, Hosking FJ, Cook DG. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care. 2018;41(10):2127–2135. PMID: 30104296. doi: 10.2337/dc18-0287
Hine JL, de Lusignan S, Burleigh D, Pathirannehelage S, McGovern A, Gatenby P. Association between glycaemic control and common infections in people with Type 2 diabetes: a cohort study. Diabetic Medicine. 2017;34(4):551–557. PMID: 27548909. doi: 10.1111/dme.13205
Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N. Diabetes mellitus, fasting glucose, and risk of cause-specific death. New England Journal of Medicine. 2011;364(9):829–841. PMID: 21366474. PMCID: PMC4109980. doi: 10.1056/NEJMoa1008862
Jain S, Kamimoto L, Bramley AM, Schmitz AM, Benoit SR, Louie J. Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009. New England Journal of Medicine. 2009;361(20):1935–1944. PMID: 19815859. doi: 10.1056/NEJMoa0906695
Allard R, Leclerc P, Tremblay C, Tannenbaum TN. Diabetes and the severity of pandemic influenza A (H1N1) infection. Diabetes Care. 2010;33(7):1491–1493. PMID: 20587722. PMCID: PMC2890346. doi: 10.2337/dc09-2215
Wilking H, Buda S, von der Lippe E, Altmann D, Krause G, Eckmanns T. Mortality of 2009 pandemic influenza A(H1N1) in Germany. Euro Surveillance. 2010;15(49). PMID: 21163179. doi: 10.2807/ese.15.49.19741-en
Wang W, Chen H, Li Q, Qiu B, Wang J, Sun X. Fasting plasma glucose is an independent predictor for severity of H1N1 pneumonia. BMC Infectious Diseases. 2011;11:104. PMID: 21510870. PMCID: PMC3103438. doi: 10.1186/1471-2334-11-104
Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020:e3319. PMID: 32233013. PMCID: PMC7228407. doi: 10.1002/dmrr.3319.
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the “Cytokine Storm” in COVID-19. J Infect. 2020;80(6):607-613. PMID: 32283152. PMCID: PMC7194613. doi: 10.1016/j.jinf.2020.03.037.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y. Clinical features of patients infected with 2019 novel Coronavirus in Wuhan, China. Lancet. 2020;395:497–506. PMID: 31986264. PMCID: PMC7159299. doi: 10.1016/S0140-6736(20)30183-5
Bhavana V, Thakor P, Singh SB. COVID-19: pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV-2 pandemic. Life Sci. 2020;261:11836. PMID: 32846164. PMCID: PMC7443335. doi: 10.1016/j.lfs.2020.118336
Liang L, Yang B, Jiang N, et al. Three-month Follow-up Study of Survivors of Coronavirus Disease 2019 after Discharge. J Korean Med Sci. 2020;35(47):e418. PMID: 33289374. PMCID: PMC7721559. doi: 10.3346/jkms.2020.35.e418
Huang C, Huang L, Wang Y. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220-232. PMID: 33428867. PMCID: PMC7833295. doi: 10.1016/S0140-6736(20)32656-8
Androula Pavli, Maria Theodoridou, Helena C Maltezou. Post-COVID syndrome: Incidence, clinical spectrum, and challenges for primary healthcare professionals. Arch Med Res. 2021;S0188-4409(21)00081-3. PMID: 33962805. PMCID: PMC8093949. doi: 10.1016/j.arcmed.2021.03.010
Critchley JA, Carey IM, Harris T, DeWilde S, Hosking FJ, Cook DG. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care. 2018;41(10):2127–2135. PMID: 30104296. doi: 10.2337/dc18-0287
Alexandraki KI, Piperi C, Ziakas PD, Apostolopoulos NV, Makrilakis K, Syriou V. Cytokine secretion in long-standing diabetes mellitus type 1 and 2: associations with low-grade systemic inflammation. Journal of Clinical Immunology. 2008;28(4):314–321. PMID: 18224429. doi: 10.1007/s10875-007-9164-1
Lecube A, Pachon G, Petriz J, Hernandez C, Simo R. Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement. PloS One. 2011;6(8):e23366. PMID: 21876749. PMCID: PMC3158070. doi: 10.1371/journal.pone.0023366
Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology. 2020;20(6):363-374. PMID: 32346093. PMCID: PMC7187672. doi: 10.1038/s41577-020-0311-8
Huang J, Xiao Y, Zheng P, Zhou W, Wang Y, Huang G. Distinct neutrophil counts and functions in newly diagnosed type 1 diabetes, latent autoimmune diabetes in adults, and type 2 diabetes. Diabetes Metabolism Research Review. 2019;35(1):e3064. PMID: 30123986. doi: 10.1002/dmrr.3064.
Stefan R, Francesco R, Kamlesh K, Geltrude M, David H. Practical recommendations for the management of diabetes in patients with COVID-19 Lancet Diabetes Endocrinol. 2020 Jun;8(6):546–550. PMID: 32334646. PMCID: PMC7180013. doi: 10.1016/S2213-8587(20)30152-2
Kim JH, Park K, Lee SB, Kang S, Park JS, Ahn C. Relationship between natural killer cell activity and glucose control in patients with type 2 diabetes and prediabetes. Journal of Diabetes Investigation. 2019;10(5):1223–1228. PMID: 30618112. PMCID: PMC6717814. doi: 10.1111/jdi.13002
Menart-Houtermans B, Rutter R, Nowotny B, Rosenbauer J, Koliaki C, Kahl S. Leukocyte profiles differ between type 1 and type 2 diabetes and are associated with metabolic phenotypes: results from the German Diabetes Study (GDS). Diabetes Care. 2014;37(8):2326–2333. PMID: 25061140. doi: 10.2337/dc14-0316
Shehan N Randeria, Greig J A Thomson, Theo A Nell, Timothy Roberts, Etheresia Pretorius. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol. 2019 Jun 4;18(1):72. PMID: 31164120. PMCID: PMC6549308. doi: 10.1186/s12933-019-0870-9
Hoffmann M, Kleine-Weber H, Schroeder S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271+280/e8. PMID: 32142651. PMCID: PMC7102627. doi: 10.1016/j.cell.2020.02.052
Bindom SM, Lazartigues E. The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol Cell Endocrinol. 2009; 302:193–202. PMID: 18948167. PMCID: PMC2676688. doi: 10.1016/j.mce.2008.09.020
Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci. 2017; 18:e563. PMID: 28273875. PMCID: PMC5372579. doi: 10.3390/ijms18030563
Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47:193–199. PMID: 19333547. PMCID: PMC7088164. doi: 10.1007/s00592-009-0109-4
Raj VS, Mou H, Smits SL. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495:251–254. PMID: 23486063. PMCID: PMC7095326. doi: 10.1038/nature12005
Iacobellis G. COVID-19 and diabetes: can DPP4 inhibition play a role? Diabetes Res Clin Pract. 2020;162:108125. PMID: 32224164. PMCID: PMC7271223. doi: 10.1016/j.diabres.2020.108125
Patel VB, Parajuli N, Oudit GY. Role of angiotensin‐converting enzyme 2 (ACE2) in diabetic cardiovascular complications. Clin Sci (Lond). 2014;126(7):471-482. PMID: 24329564. doi: 10.1042/CS20130344
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–2128. PMID: 26378978. doi: 10.1056/NEJMoa1504720
Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin–angiotensin system. Int J Mol Sci. 2019;20(3):629. PMID: 30717173. PMCID: PMC6387046. doi: 10.3390/ijms20030629
Bornstein SR, Dalan R, Hopkins D, Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;16(6):297–298. PMID: 32242089. PMCID: PMC7113912. doi: 10.1038/s41574-020-0353-9
Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39(7):1115–1122. PMID: 27289124. doi: 10.2337/dc16-0542
Bonnet F, Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab. 2018;44(6):457–464. PMID: 30266577. doi: 10.1016/j.diabet.2018.09.005
Pal R, Bhadada SK. Should anti-diabetic medications be reconsidered amid COVID-19 pandemic? Diabetes Res Clin Pract. 2020;163:108146. PMID: 32283128. PMCID: PMC7151403. doi: 10.1016/j.diabres.2020.108146
Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601–604. PMID: 32178593. PMCID: PMC7103712. doi: 10.1080/22221751.2020.1739565
Xu J, et al. Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension. Lab Invest. 2018;98(10):1333–1346. PMID: 29789684. doi: 10.1038/s41374-018-0080-1
He J, Yuan G, Cheng F, Zhang J, Guo X. Mast cell and M1 macrophage infiltration and local pro-inflammatory factors were attenuated with incretin-based therapies in obesity-related glomerulopathy. Metab Syndr Relat Disord. 2017;15(7):344–353. PMID: 28737448. PMCID: PMC5576269. doi: 10.1089/met.2017.0057
Pal R, Sachdeva N, Mukherjee S, Suri V, Zohmangaihi D, Ram S. Impaired anti-SARS-CoV-2 antibody response in non-severe COVID-19 patients with diabetes mellitus: a preliminary report. Diabetes Metab Syndr. 2021;15:193–196. PMID: 33385765. PMCID: PMC7762626. doi: 10.1016/j.dsx.2020.12.035
Dispinseri S, Lampasona V, Secchi M, Cara A, Bazzigaluppi E, Negri D. Robust neutralizing antibodies to SARS-CoV-2 develop and persist in subjects with diabetes and COVID-19 pneumonia. J Clin Endocrinol Metab. 2021;106(5):1472-1481. PMID: 33513242 PMCID: PMC7928901. doi: 10.1210/clinem/dgab055
Lampasona V, Secchi M, Scavini M, Bazzigaluppi E, Brigatti C, Marzinotto I. Antibody response to multiple antigens of SARS-CoV-2 in patients with diabetes: an observational cohort study. Diabetologia. 2020;3:2548–2558. PMID: 33029657. PMCID: PMC7541098. doi: 10.1007/s00125-020-05284-4
Lee YS, Jun HS. Anti‐inflammatory effects of GLP‐1‐based therapies beyond glucose control. Mediators Inflamm. 2016; 2016:3094642. PMID: 27110066. PMCID: PMC4823510. doi: 10.1155/2016/3094642